THE ROLE OF MOBILE SMS-REMINDERS IN IMPROVING DRUGS COMPLIANCE IN PATIENTS RECEIVING ANTI-TB TREATMENT FROM DOTS PROGRAM

Rukhsana Javed Farooqi¹, Sadia Ashraf², Mukhtiar Zaman³

INTRODUCTION

Tuberculosis (TB) is amongst the major health problems worldwide. In 2014, about 9.6 million new cases were reported from across the world and about 1.5 million patients died because of this infection. Pakistan ranks at 5th position according to the burden of this disease¹.

Drugs adherence may be defined as “taking of drug(s) in prescribed dosage and for prescribed time duration. It has a fundamental role for the success of any treatment”. Like any chronic infection, drugs adherence has a pivotal role in tuberculosis². It improves cure rate and avoid drugs resistance. Drugs adherence greater than 90% ensures cure and sure avoidance of drugs resistance²³. Highly effective anti-TB drugs are available to treat tuberculosis but because of poor adherence we haven’t been able to achieve global control of this disease.

According to World Health Organization (WHO), patients suffering from TB need rifampicin-based combination therapy for six months (new cases) and eight months (retreatment cases). All anti-TB drugs are associated with many side effects. Therefore, these three factors, namely i) combination of drugs, ii) prolonged duration, and iii) drugs-associated side effects, result in poor drugs’ adherence which results in many worse consequences. These include: prolonged time duration of infectious stage of TB⁴, high relapse rate after treatment⁵, resistance to anti-TB drugs⁶⁷, expensive treatment regimens for prolonged duration with less reported efficacy⁸ and finally, increased morbidity and mortality⁴. Therefore, after starting a patient on anti-TB treatment, regular drugs taking must be ensured by uninterrupted provision of drugs, managing for side-effects of these drugs and even psychological and social support. To ensure all this, WHO recommends directly observed treatment short course (DOTS) strategy to achieve desirable results of TB treatment worldwide⁹.¹⁰
Mobile phone is the most commonly used technology of communication worldwide. It provides video, audio and text messaging facilities to communicate with one another. It is the most cost-effective way to communicate with people residing in difficult to reach areas. The communication can be made in any language and at any time. Mobile text message, known as SMS (Short Messaging Service) is being used in healthcare systems. This is called mobile health (mHealth).10,11 It provides excellent and most cost-effective means of communication to healthcare system to be used among healthcare workers themselves as well as healthcare workers and patients. Barriers of long distances are successfully eliminated by mHealth.12 It has been successfully used for improving drugs compliance with anti-HIV drugs.13 Similarly it may be used to improve drugs compliance with anti-TB drugs.

Only couple of studies have studied mHealth technology in patients taking anti-TB drugs;14,15 all these evaluating adherence to anti-TB drugs, but none has reported impact of SMS-reminders on cure rate. We conducted this study to find out the role of SMS-reminder strategy on drugs compliance, treatment outcome specially cure and default rate.

METHODOLOGY

This was interventional, double blind, randomized controlled study approved by ethics committees of Khyber Medical University Peshawar. The study was conducted to find out the role of mobile SMS-reminders in improving drugs compliance in patients receiving anti-TB treatment. It was conducted from June 2014 to June 2015 on TB patients registered in TB Clinics of Khyber Teaching Hospital (KTH) and Emergency Satellite Hospital (ESH) Nahaqi. There were two groups in this study: interventional and control. Patients in both groups were given anti-TB drugs on monthly basis for 6 months. As an intervention, mobile SMS-reminders were sent daily to patients during intensive phase (initial 2 months) of anti-TB treatment in the intervention group but not in the control group (Figure1).

Following was the inclusion and exclusion criteria of this study: Inclusion criteria consisted of i) all new cases of pulmonary and extra pulmonary tuberculosis registered in TB control program, ii) having personal mobile phone or an access to mobile phone of his/her relative, and iii) able to read and/or understand SMS-reminder (himself/herself or via his/her relative). Exclusion criteria included those i) having no access to mobile phone, ii) those with visual problems, iii) those physically unable to handle mobile phone, iv) those unable to read and/or understand SMS-reminder (himself/herself or via his/her relative), v) those with category-II treatment (relapse and treatment failure cases), and vi) those with meningial, miliary and abdominal TB.

The sample size was calculated by using WHO sample size calculator for random control study. Studies have reported 19% default rate in patients taking anti-TB drugs, but we could not find any study suggesting improved default rate by SMS-reminder strategy; therefore we took 10% expected default rate after SMS-reminder intervention in our study. Therefore, taking \(p \) as 0.20 and 0.10 with 95% confidence level and margin of error (0.05), the sample size was calculated to be 148. Each group comprised 74 patients.

The data was planned to be collected through interview technique using pretested structured questionnaire. Special mobile phone SMS package was taken to deliver the reminder message. Research assistants were identified to collect data. They were medical technologists working in the two above-mentioned TB clinics. Training sessions were arranged for these research assistants in which they were educated on study aims and objectives, questionnaire was discussed with them, and they were practically trained how to collect and enter data in the given questionnaire. Questionnaire was pretested on patients in TB Clinic of KTH and necessary changes were made as required. The required sample of 148 was divided into two (intervention and control) groups, 74 patients in each group, by random assignment using the computer-generated numbers.

Study was conducted among new TB patients, who were registered in TB control program for anti-TB drugs. Patients fulfilling the inclusion criteria were identified and study was introduced to them. In case of willing patients and absence of exclusion criteria, informed consent (verbal/written) was obtained and they were enrolled in the study. If the patient was allocated to intervention group, he/she was asked to come to TB clinic every month to collect anti-TB drugs as per TB control programme protocol; in addition, reminder was given by SMS on daily basis to take drugs during intensive phase (initial 2 months) of anti-TB treatment. If the patient was allocated to control group, he/she was asked to come to TB clinic every month to collect anti-TB drugs as per TB control programme protocol; but no reminder was given by SMS. Participants in the intervention group were educated for understanding SMS-reminder intervention in our study. Therefore, taking \(p \) as 0.20 and 0.10 with 95% confidence level and margin of error (0.05), the sample size was calculated to be 148. Each group comprised 74 patients.

The data was planned to be collected through interview technique using pretested structured questionnaire. Special mobile phone SMS package was taken to deliver the reminder message. Research assistants were identified to collect data. They were medical technologists working in the two above-mentioned TB clinics. Training sessions were arranged for these research assistants in which they were educated on study aims and objectives, questionnaire was discussed with them, and they were practically trained how to collect and enter data in the given questionnaire. Questionnaire was pretested on patients in TB Clinic of KTH and necessary changes were made as required. The required sample of 148 was divided into two (intervention and control) groups, 74 patients in each group, by random assignment using the computer-generated numbers.

Study was conducted among new TB patients, who were registered in TB control program for anti-TB drugs. Patients fulfilling the inclusion criteria were identified and study was introduced to them. In case of willing patients and absence of exclusion criteria, informed consent (verbal/written) was obtained and they were enrolled in the study. If the patient was allocated to intervention group, he/she was asked to come to TB clinic every month to collect anti-TB drugs as per TB control programme protocol; in addition, reminder was given by SMS on daily basis to take drugs during intensive phase (initial 2 months) of anti-TB treatment. If the patient was allocated to control group, he/she was asked to come to TB clinic every month to collect anti-TB drugs as per TB control programme protocol; but no reminder was given by SMS. Participants in the intervention group were educated for understanding SMS-reminder intervention in our study. Therefore, taking \(p \) as 0.20 and 0.10 with 95% confidence level and margin of error (0.05), the sample size was calculated to be 148. Each group comprised 74 patients.
Following parameters were recorded after the end of anti-TB treatment: a) total number of visits of patient in TB clinic, b) weight of patient in kg, and c) category of treatment outcome (i.e. cure, treatment complete, treatment default, and treatment failure) defined as follows:

Cure: “when smear (culture) became negative during treatment and remained negative after the end of treatment in a patient with positive smear (culture) before treatment.”

Treatment success: “a sum of patients with cure and treatment complete (for smear or culture positive patients only).”

Treatment failure: “a patient whose sputum smear (culture) remained positive at 5 months or later during treatment, and a patient found to harbor a multi-drug-resistant (MDR) strain at any point of time during the treatment, irrespective of smear-negative or -positive.”

Default: “a patient whose treatment was interrupted for 2 consecutive months or more.” It was the primary outcome measure of the study.

Study data was analysed by SPSS 19 version. Descriptive statistics like percentage and mean were calculated for variables like sex, age and education status. Comparative analysis between two study groups was done by Chi-square test. At 95% confidence limit, p value <0.05 was considered as significant.

RESULTS

One hundred and forty-eight (148) patients were enrolled: 88 patients (59.5%) were enrolled in KTH and 60 (40.5%) in ESH. Mean age was 29.4 ± 17.6 years. Male patients were 63 (43%) and female patients were 85 (57%). Majority of patients was uneducated (n=105, 71%). Pulmonary TB was the most common type of disease (n=89, 60%), out of which 73% cases were sputum smear-positive. There were 74 patients in each group; the demographics of both groups were comparable (Table 1). There were no dropouts; all patients completed the study.

After completing anti-TB treatment of six months duration; one patient had treatment failure in each group (both groups were comparable). Forty-nine patients had treatment complete in each group (both groups were comparable). Twenty-one patients had cured in intervention group as compared to 20 patients in control group. Three patients had treatment default in intervention group as compared to 4 patients in control group (Figure 2).

DISCUSSION

Mobile phone technology is being used across the world and almost 6.8 billion people are using it to communicate with one another16. It is quick, reliable and most cost-effective tool of communication, and therefore increasingly used in healthcare systems nowadays17. It offers many ways of communication like phone video calls, audio calls, MMS and SMS. Many online apps can be also used like WhatsApp and others. Its being used: 1) among healthcare workers for shift reminders, for sharing medical updates, seeking opinion of one another, etc. 2) among healthcare workers and patients for disease management and research, and 3) among patients themselves to share experiences and support one another in patients groups.

Chronic diseases like diabetes, hypertension, epilepsy, asthma, chronic renal failure, cirrhosis and arthritis,
HIV, etc. need life-long management. All these diseases are progressive in nature and are associated with many complications. Patients of all such chronic diseases need to take drugs regularly, most of the times two or more in number, and at least once everyday. All these drugs are having side effects and may interact with one another. Therefore it's vital to take drugs regularly to control these diseases so the associated complications can be avoided or their onset can be delayed. In addition it's equally important to evaluate these patients for the efficacy of their drugs as well as to monitor for their side effects. Because of possible side effects of drugs and even believing drugs that drugs are not needed after disease control is achieved, drugs' adherence is compromised not uncommonly. Therefore SMS-reminders are being used in many centres in an attempt to improve drugs' compliance and disease monitoring. Patients have accepted this intervention across the world in many studies18,19. In Pakistan, till 2014, total mobile phone subscriptions had reached almost 140 million (76.2% of total population)20. Evidently, mobile phone technology provides unique opportunity to target difficult-to-reach people in our country. Tuberculosis is also chronic infection and needs regular drugs' taking for at least 6 months. In the national TB control, under DOTS strategy, patients are given free anti-TB drugs on monthly basis from TB centres across Pakistan. Poor drugs' adherence is also not uncommon in our patients because of many known factors mentioned in chapter-2 (Literature Review). To improve drugs' adherence, SMS text message can be sent daily, early in the morning, to remind patients to take their drugs21,22. Even patients can confirm drugs' taking by reply-SMS text message23-27. We have provided new evidence that SMS-reminders are effective in improving drugs' adherence in our TB patients and may improve cure rate in our national TB program.

We found that SMS-reminders decreased default rate and consequently improved cured rate. Number of “default” cases was low in intervention group as compared

Figure 1: Study protocol

| Recruitment | 1st Month | 2nd Month | 3rd Month | 4th Month | 5th Month | 6th Month |Outcome |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Intervention Group | Mobile SMS sent daily | Drugs | Drugs | Drugs | Drugs | Drugs |
| Control Group | Drugs | Drugs | Drugs | Drugs | Drugs | Drugs |

Figure 2: Comparison of results in two groups after 6 months treatment

![Comparison of results in two groups after 6 months treatment](image-url)
to control group, but this difference was statistically not significant (P = 0.983). This may be due to low default rate in the control group than the presumed rate of 10% used for sample size calculations. We found four studies on literature review: Bridges.org and Broomhead S, et al. from South Africa, and Owiti et al. from Kenya reported the same findings with SMS-reminders, whereas Iribarren et al. from Argentina found no improvement with SMS-reminders. Recently, Mohammed et al. reported no significant difference between SMS intervention or control groups for treatment success in Karachi.

We conducted parallel-randomized control study. Iribarren et al. had adopted the same design in their pilot study in 2012. Recently published study by Mohammed et al. from Karachi had also the same design. The other three studies had adopted different designs. Bridges.Org conducted questionnaire based interviews among patients & staff as well as collected data from patients’ files. Broomhead et al. conducted a retrospective analysis of patients’ files. Owiti et al. conducted feasibility pilot study.

We enrolled 148 patients, 74 in each group. Bridges.Org analysed data of 221 patients. Broomhead et al. compared 24 files of intervention with 96 files of control. Owiti et al. analysed files of 187 patients. Iribarren et al. compared 18 patients of intervention group with 19 patients in control group.

We used SMS-text messages to remind our patients to take their drugs. Broomhead et al. used SIMpill® (wireless pill bottle) connected with a central server. SMS used to be sent automatically this server to notify that patient had taken drug. The other studies sent SMS-reminders like in our study.

Technically this study is superior to above-mentioned four studies as regards to research bias parameters: performance bias, detection bias, attrition bias and reporting bias. Study from Karachi is comparable with this study.

LIMITATIONS

Rich data was obtained through both qualitative and quantitative methods. Nonetheless, this study has some important limitations:

This study lacked an objective adherence measure. Self-reporting method was used to assess drugs adherence. It has been found that patients reports higher adherence than actual by recall method. This bias could have been limited by daily assessment of drug adherence. Because of this potential bias, we assessed sputum or culture conversion and treatment outcomes for objective measures to support evidence of actual treatment adherence.

Final treatment success rates were high in both groups which may indicate that it is possible that those who agreed to participate were more likely to be adherent with treatment.

We did not assess background knowledge of participants about the nature of TB, which determines motivation level and drug adherence. We could have analyzed the impact of background knowledge and level of motivation on treatment outcome in both groups.

SMS reminder was “one-way” process; there was no system like patients telephonic confirmation of drug taking as result of text message.

CONCLUSIONS

Number of treatment-default cases was lower in “intervention group” than “control group”, but this numerical difference was not significant statistically. We can improve drugs’ adherence in our TB patients by sending them regular mobile phone SMS-reminder.

RECOMMENDATIONS

Mobile phone SMS-reminder is a cost-effective, feasible and widely acceptable tool in our everyday clinical practice. It’s easy to adopt and bring it in practice. Concerned healthcare workers and patients can be easily trained on it. By decreasing default rate, it may potentially improve cure rates of our TB control program.

ACKNOWLEDGEMENTS

We acknowledge the followings for helping us in different phases of our study, like patients’ data collection and analysis: Mr. Nazir and Mr. Ashfaq medical technologist at TB clinic at KTH and ESH Nahaqi respectively. Dr. Aysha for helping me in formatting this article. Prof. Javed Iqbal Farooqi helped me to bring out the final manuscript.

REFERENCES

6. Weis SE, Slocum PC, Blais FX, King B, Nunn M, Matney GB

30. Owiti P, Gardner A, Szkwarko D, Diero L, Carter EJ. Mobile phone text messaging reminders to aid adherence to tuberculosis care in Eldoret, Kenya. 43rd World Conference
MOBILE SMS-REMINDERS IN IMPROVING DRUGS COMPLIANCE IN PATIENTS RECEIVING ANTI-TB TREATMENT...

CONTRIBUTORS

RJF Conceived, designed, and collected data, statistical analysis, prepared manuscript. SA and MZ Collected data, conducted data analysis, edited manuscript. All authors contributed significantly to the submitted manuscript.