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INTRODUCTION & DISCUSSION
A glioma is any tumour that has its origins from a gli-

al cell. These are supporting cells that nourish the neu-
rones within the nervous system1. Patients experience a 
decline in cognitive function and score lower on quality 
of life scale than any other cancer 2. Gliomas are also 
accountable for the greatest number of life years lost 
(an average of eight years) for any given cancer patient 
3. Furthermore, the 5-year survival rate is dismal with 
less than 10% surviving in patients with glioblastoma 
multiforme – the highest grade of glioma (Fig.1)4. 

Gliomas account for almost 90% of brain tumours, 
with the highest incidence in the Southeast of England 
3. Current treatments involve radiotherapy followed by 
Temozolomide chemotherapy and surgical resection5. 
However, efficacy is limited by the fact that alternative 
oncogenic pathways can mutate, offering resistance. 
Compounding this is the problem of targeting tumour 
elements within the central nervous system which re-
quires drugs to pass the blood-brain-barrier as well as 
the resulting haematological toxicity in patients6,7. Fi-
nancially, this therapy proves to be expensive especially 
as an adjuvant8. Looking at all these issues, the justifica-
tion for novel approaches to glioma treatment becomes 
apparent. 

The use of oncolytic viruses to treat cancer dates 
back as far as the 19th century although unbeknownst to 
doctors at the time. Multiple observations of remission 
in cancer patients with concurrent viral infections paved 

the way for research into the field9. We now know that 
the oncolytic effect of viruses is due to replication-me-
diated cell lysis10. 

This review will explore the current state of oncolytic 
virotherapy in treating glioma. It will focus on adenovi-
rus and herpes simplex virus due to their effectiveness 
in clinical trials11. First, the rationales behind using each 
virus will be discussed before comparing the various 
mechanisms employed. Finally, the future of the field 
will be questioned to see if there is potential in oncolytic 
virotherapy.

Adenovirus (Ad) – Concept & Rationale

Adenoviruses are a good choice for gene therapy as 
a result of the ease with which their genome can be hi-
jacked to carry transgenes. They also have the ability to 
grow exponentially in a short space of time thus boost-
ing their oncolytic potential12. 

The replication cycle follows the mechanism of many 
viruses in that it begins with the infection of a cell and 
ends with the release of many virus particles. First, ade-
novirus interacts with the coxsackie adenovirus receptor 
(CAR) expressed by host cell membranes13. Internalisa-
tion is then promoted through an adenoviral penton 
base which recognises integrins on the cell surface and 
results in the formation of endosomes14. This allows ad-
enoviral particles to relocate to the nuclear membrane 
where viral DNA can enter the nucleus15. Lastly, genomic 
transcription of viral DNA results in the organised pro-
duction of early, immediate and late genes which trans-
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locate to the cytoplasm to produce new viral particles. 
These are eventually released by cell lysis and are thus 
free to infect more cells13.

Adenovirus – Rb Pathway

Retinoblastoma protein (pRb) is implicated in a va-
riety of cancers including almost a third of malignant 
gliomas16. This protein works as a tumour suppressor 
gene where it binds to E2F transcription factors thereby 
preventing the cell from moving into S-phase. A muta-
tion in pRb thus leads to unregulated cell proliferation17. 
One of the earlier experiments was to use Ad5CMV-Rb, 
which carried the Rb gene, in an effort to replace the 
aberrant protein expressed in cancer cells. The virus was 
made replication-deficient in order to limit gene ex-
pression in healthy tissue but this also reduced the ca-
pacity for gene transfer to a small number of cells18. As 
a result, it was observed that there was growth arrest in 
gliomas, however there was no actual remission i.e. the 
virus caused a cytostatic effect but was not cytopathic16. 

Studies like these led to the development of con-
ditionally replicative adenoviruses (CRAds), which are 
unable to replicate in normal host cells but selectively 
target tumour cells19. In order to protect against infec-
tion, host cells will undergo cell cycle regulation and 
apoptosis20. To counter this, the adenovirus E1A gene 
codes for a protein which displaces E2F from pRb thus 
allowing cell transition into S-phase which favours viral 
DNA synthesis21-23. 

Ad5-Delta24 is a genetically modified adenovirus 
which has a 24-bp deletion in the region of its genome 
coding for E1A24. As a result, it can no longer prevent the 
pRb checkpoint in healthy cells and thus cannot divide. 
However, as pRb is already aberrant in tumour cells25 , 
there is nothing to stop progression into S-phase. This 
mechanism allows adenovirus to be conditionally-rep-
licative in tumour cells whilst retaining its oncolytic 
potential. In vitro studies have shown Ad5-Delta24 to 
be a potent oncolytic virus in glioma cell cultures. By 
transferring pRb to pRb-null cells i.e. cancer cells, it was 
confirmed that the conditionally-replicative mechanism 
was indeed dependent on retinoblastoma protein. It 
was important to confirm this finding in order to be 
certain that there would be no bystander damage to 
brain tissue when running trials on humans. Multiplicity 
of infection ratios (MOI), the ratio between virus parti-
cles and tumour cells, as low as five caused noticeable 
cytopathic effects and within seven days some cell lines 
were in complete remission. With MOI ratios of ten, cell 
lines showed complete cytolysis within 14 days, how-
ever it must be noted that results differed between the 
cell lines used. In vivo studies were less marked with 
around 40% of live subjects showing tumour regression 
but multiple injections had to be used. Moreover, de-
spite many different animals being used, to date there 

have been no clinical trials to authenticate the efficacy 
of the virus in humans24. 

Although the results of Ad5-Delta24 seemed prom-
ising, there was a stark difference between cell lines in 
terms of cytolytic effects. Bergelson et al. found that, 
despite adenovirus anchorage to tumour cells being 
related to CAR, internalisation of the virus relied on a 
secondary mechanism that was integrin dependent26-28. 
Also, Asaoka et al. found that the expression of CAR on 
glioma cells was quite variable and thus not a stable cel-
lular identifier (Fig.2)29-31. Conclusively, Ad5-Delta24 af-
fected cell lines differently due to their variability in CAR 
expression. Ad5-Delta24RGD was produced to include 
an RGD motif (arginine-glycine-aspartic acid), which 
binds strongly to integrins. Such a modification meant 
the virus would not have to rely on CAR but was in-
stead integrin-dependent, resulting in a higher infectiv-
ity32,33. To simulate clinical conditions, cells were grown 
in spheroids which replicated a tumour mass that may 
actually be encountered instead of monolayers of gli-
oma cells. Whilst replicative-deficient viruses barely 
broke the border of the mass, with Ad5-Delta24RGD 
the viability of cells was significantly reduced. Concor-
dantly, when tested in nude mice with xenografts of low 
CAR-expressing human glioma, it was found that there 
was complete remission in 90% of mice and they sur-
vived free of any cancer for four months31. 

Unlike the variants previously mentioned, a phase I/
II trial has recently been completed to assess the safe-
ty profile of Ad5-Delta24RGD. For the first time, it has 
been shown that this virus can cause complete remis-
sion in patients with no evidence of relapse more than 
three years after the disease. However, one must note 
that complete oncolysis was only seen in three patients 
and as the trial has been published quite recently, there 
has been little time to evidence any side effects or re-
lapses34. 

Adenovirus – P53 pathway

P53 is a tumour suppressor gene that acts to inhibit 
cell cycle progression and cause apoptosis in order to 
prevent tumour formation35. Not only is p53 mutated in 
a vast array of cancers but also in more than a third of 
astrocytomas36,37. By upregulating p21, p53 inhibits cy-
clin-dependent kinases to retard progression of the cell 
cycle. A secondary effect includes the transcriptional ac-
tivation of Bax which leads to apoptosis38. Thus, it makes 
sense that a transfer of p53 to p53-null cells results in 
apoptosis and indeed this has been shown39.

Adenoviruses express the E1B-55K protein which 
binds to p53 in an attempt to stop apoptosis and allow 
the production of viral progeny40. Also they produce the 
E1B-19K protein to regulate free Bak and Bax proteins in 
a further attempt to reduce mitochondrial-dependent 
apoptosis41. 
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ONYX-015 is the earliest example of a genetically en-
gineered adenovirus and has a deletion in the E1B-55K 
gene. As a result, in normal cells ONYX-015 is unable 
to replicate but in cancerous cells where p53 is already 
mutated, the adenovirus is able to produce progeny. In 
this way, ONYX-015 is a conditionally replicative ade-
novirus42-44. However, this has been contested with re-
cent studies that suggest ONYX-015 works by defecting 
the export of mRNA from the nucleus45,46. Phase I tri-
als have shown that this virus has a good safety profile 
when injected into resected tumours47. A team in China 
have also completed a phase III trial of the virus with 
enough success to warrant FDA approval for its use in 
patients with head and neck cancer albeit in combina-
tion with chemotherapy48. Despite this, there has been 
much criticism of ONYX-015. Studies have found that 
many gliomas express functional p53 and may contain 
a small population of p21-expressing tumour cells ren-
dering the virus ineffective38. Moreover, as E1B-55K is 
also involved in the translocation of nuclear viral mRNA 
to ribosomes and ONYX-015 is E1B-55K-null, the repli-
cative potential is attenuated and indeed viral transduc-
tion in glioma models has not shown any substantial 
amount of oncolytic activity47,49. Likewise, progression 
was shown no more than two months after treatment 
on average in addition to the fact that only a third of 
the patients treated with the maximum dose were alive 
after 19 months. Thus, although ONYX-015 is safe, its 
therapeutic efficacy is questionable47. As such, one of 
the biggest hurdles in virotherapy is maintaining a fine 
balance between oncolytic potential and tumour selec-
tivity. 

Herpes Simplex Virus (HSV-1) – Concept & Ratio-
nale 

HSV-1 is a neurotropic virus i.e. it preferentially in-
fects the nervous system hence why it is favoured by 
current research for glioma (Fig.3)50-52. It has a relative-
ly large genome which does not integrate with that of 
the hosts53-56. As a result, it can be modified to carry a 
large number of transgenes and exhibit latency without 
causing any insertional mutagenesis that may affect the 
cell unpredictably. Likewise, the genes associated with 
its neurovirulence are nonessential and can thus be 
modified without affecting the virus’ survival57. The virus 
is inherently cytolytic and in case therapy goes awry, 
antiherpetic drugs such as gancyclovir can be used as a 
failsafe58. One caveat is that in the general population, 
a high rate of immunity already exists which may cause 
difficulties with regards to viral proliferation, although 
its habitation of a nuclear episomal state may avoid 
provoking an immune response altogether59,60.

The first modified replicative-competent herpes vi-
rus was a mutant with a deletion in the tk gene and 
was called dlsptk. Briefly, for herpes virus to replicate, it 
requires the presence of thymidine kinase. This allows 

the phosphorylation of deoxythymidine – a precursor 
for deoxythymidine triphosphate which is used in DNA 
synthesis. In normal cells there are two types, TK1 and 
TK2, with the former only being present during cellular 
division (as more substrate is needed)61. HSV-1 codes 
for its own thymidine kinase allowing it to replicate in 
both dividing and non-dividing cells, however dlsptk is 
tk-null. As a result, it must rely on the cells inherent thy-
midine kinase activity, and as only replicating cells have 
both TK1 and TK2, only replicating cells are sufficiently 
suitable for HSV-1 replication. As a result, HSV-1 cells 
only replicate in dividing cells such as tumour cells in the 
nervous system62. In vivo studies proved that dlsptk was 
a potent oncolytic vector, however the deletion in the 
tk gene also meant the mutant was resistant to antiviral 
treatment. This, in combination with noxious effects at 
high titres eventually led to the dismissal of dlsptk62,63. 
Nevertheless, this example proved as a proof of concept 
that HSV-1 could indeed affect gliomas vigorously. 

Herpes Simplex Virus 1 – PKR Pathway

Unlike adenovirus, a single gene deletion in HSV-1 
does not render the virus innocuous to non-dividing 
cells64,65. Thus, to prevent herpes relapsing to its wild-
type form, HSV-1 is often modified to have a double 
knockout. Viruses with such mutations are often re-
ferred to as 2nd generation oncolytic viruses with the 
first variant termed G20760,66. G207 has paired deletions 
in both of its ϒ134.5 genes which regulate the neuroviru-
lence of HSV-1 and overcome host cell defence. Usually 
when HSV-1 infects a cell, RNA-dependent protein ki-
nase R (PKR) leads to an antiviral response that induc-
es protein synthesis shutoff. This is carried out by the 
phosphorylation of eukaryotic initiating factor 2-alpha 
(eIF-2α) by PKR and culminates in the cessation of virus 
replication. The ϒ134.5 genes code for infected cell pro-
tein 34.5 (ICP34.5) which blocks PKR mediated protein 
synthesis shutoff and therefore allows HSV-1 to con-
tinue replicating67. Genetic engineering of HSV-1 with 
its ϒ134.5 gene deletions means that the virus can no 
longer overcome host defences in normal cells. Howev-
er, in cancer cells with an oncogenic Ras system, PKR is 
already in a repressed state and so G207 no longer has 
to rely on its ϒ134.5 genes53,68. Moreover, the UL39 region 
of the HSV-1 genome codes for a subunit of ribonu-
cleotide reductase called ICP6. This enzyme is needed 
for the synthesis of nucleotides post-infection and just 
as with tk deletions, can be provided by cells undergo-
ing active cell division but not quiescent cells. G207 has 
a LacZ reporter gene (from bacteria) inserted into the 
UL39 region to act as a disruption and allow detection 
by histochemical methods69. Overall, these two modifi-
cations result in a doubly attenuated virus to decrease 
the chance of wild-type reversion whilst also increasing 
its the sensitivity to acyclovir thus ensuring a high safety 
margin70,71.
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Preclinical studies in glioma cell lines showed that 
an MOI as low as 0.1 managed to completely lyse the 
entire cell population within two days60. 

However, as HSV-1 is one of the commonest caus-
es of viral encephalitis, it is important to test the safety 
of the virus. When the highest dose possible was given 
to mice either intracerebrally or intraventricularly, there 
were no symptoms for over five months. Even with the 
most susceptible mouse strain, there was only slight 
non-fatal symptoms in a quarter of the population72. 
Additionally, mice that survived a previous infection 
with wild-type HSV were given a G207 inoculation. De-
spite both infections localising to the same area, there 
was no reactivation of latent HSV-173. To further com-
mend the safety of G207, trials were carried out in New 
World owl monkeys, primates with a propensity for HSV 
infection, but they were also asymptomatic74. Clinical 

trials in human patients did not elicit any adverse re-
actions nor could a maximum tolerated dose be identi-
fied. 20% of patients had reduced tumour volume and 
eight patients survived more than nine months with one 
example remaining alive even after five years. In a trial 
of 21 patients, only three patients suffered from side 
effects such as seizures or brain oedema75. Although the 
safety of G207 is almost unquestionable, almost all test 
subjects showed progression after ten months and even 
with immunosuppressive steroid therapy, most had se-
roconverted against the virus. One point to note is that 
G207 seems to hinder growth not only by replicative 
oncolysis, but also through an inflation of cytotoxic 
T-cell activity76. One could reason that immunosup-
pressive drugs to prevent seroconversion against HSV-
1 could also decrease antitumor efficacy via the T-cell 
mechanism.

Figure 1: Kaplan-Meier plot showing how survival rates change depending on the type of 
treatment for patients between 20-70 years of age.

CONCLUSION
With the current state of treatment offering little 

improvement in prognosis, oncolytic virotherapy has 
shown promise as a main player in future glioma ther-
apy. Not only have there been effective responses in 
preclinical studies but virotherapy has also proven to 
be extremely safe in humans despite using some of the 
most lethal viruses in existence. 

In spite of this, more work still needs to be done to 
advance the field. Initial hypotheses of oncolytic mech-
anisms have had to be rethought several times illustrat-
ing just how complex the biology is. One area that still 

lacks significant knowledge is how the immune system 
interacts with both viral and tumour mechanisms, fur-
ther highlighting that more research needs to be done 
to truly see how all innate processes interplay with each 
other. 

Future approaches may seek to combine virotherapy 
with other novel approaches currently being developed 
such as virus-directed enzyme prodrug therapy (VDEPT) 
as well as cancer immunology. These collaborated ef-
forts could potentially allow a deeper understanding of 
the field whilst also providing a substantial therapy for 
glioma.

**RT =   Radiotherapy
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